If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-40x+8=0
a = -16; b = -40; c = +8;
Δ = b2-4ac
Δ = -402-4·(-16)·8
Δ = 2112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2112}=\sqrt{64*33}=\sqrt{64}*\sqrt{33}=8\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{33}}{2*-16}=\frac{40-8\sqrt{33}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{33}}{2*-16}=\frac{40+8\sqrt{33}}{-32} $
| 2x/4+6x/4=6x/6-12/3 | | 5*2^5x=10 | | (n+)=-n-5 | | 8b=−72 | | k-1=-19 | | 1.26a-4.79=30 | | 6=-9+m | | 1.26=30a-4.79 | | 3-19x=4x | | (5n-6)=(3n+6) | | 1.26=30-4.79a | | 12.6x8.7=x | | 19+13x=32 | | 7t+2=30t= | | 6×-9=51-4x | | 8^(2x)=260 | | -29=a+(-9) | | 6f+5=41f= | | 5a+3=28a= | | 4t+3=19t= | | 6x+13+9x+7+30=180 | | 2x+8=12 | | 6m+4+22m= | | 4(d+2)=2d- | | 65.96+0.10x=51.96+0.12x | | 9d2+4d-9=0 | | (9+2x)(3x–4)= | | 9x-1=2(x+10 | | −43= x5−47 | | x(x+2)=x-2(1) | | k/–7+ 17=12 | | x+1767=180 |